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namer-package Manipulate objects by name

Description

Contains convenience functions for naming. Select subsets by name using matches or regular ex-
pressions. Rename objects with regular expressions or paste.

Details

{namer} is a tiny r package containing convenience functions for manipulating objects by their
names. Using these functions makes your code easier to read, and reduces duplication:

library(namer)

vec <- c(One = 1, Two = 2, Three = 3, Four = 4)

# Base R:
vec[startsWith(names(vec), "T")]
#> Two Three
#> 2 3

# Clearer:
vec |> named_starting("T")
#> Two Three
#> 2 3

# Base R:
some_names <- names(vec) %in% c("Two", "Three")
names(vec)[some_names] <- tolower(names(vec)[some_names])

# Clearer:
vec |> rename_in(c("Two", "Three"), tolower)
#> One two three Four
#> 1 2 3 4

# Base R:
vec[sort(names(vec))]
#> Four One three two
#> 4 1 3 2

# Clearer:
vec |> sort_by_name()
#> Four One three two
#> 4 1 3 2
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Functions that start with named return a subset of the original object:

vec <- c(One = 1, Two = 2, Three = 3, Four = 4)
vec |> named_in(c("Two", "Three", "Non-existent"))
#> Two Three
#> 2 3
vec |> named_starting("T")
#> Two Three
#> 2 3
vec |> named_like("[A-Z].*e$")
#> One Three
#> 1 3

sort_by_name() sorts object by name:

sort_by_name(vec)
#> Four One Three Two
#> 4 1 3 2

Functions that start with rename return the object with its names changed. You can use a named
character vector:

vec |> rename_in(c("One", "Two"), c(one = "One", two = "Two"))
#> one two Three Four
#> 1 2 3 4

Or an unnamed character vector:

vec |> rename_in(c("One", "Two"), c("First", "Second"))
#> First Second Three Four
#> 1 2 3 4

Or a function:

vec |> rename_all(tolower)
#> one two three four
#> 1 2 3 4
vec |> rename_starting("T", tolower)
#> One two three Four
#> 1 2 3 4

Or you can use a one-sided formula, as in purrr:

vec |> rename_in(c("One", "Two"), ~paste(.x, 1:2, sep = "."))
#> One.1 Two.2 Three Four
#> 1 2 3 4

Or use a regular expression with rename_gsub:

https://purrr.tidyverse.org/
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vec |> rename_gsub("[aeiou]", "e")
#> One Twe Three Feer
#> 1 2 3 4

Or match names from old to new with rename_lookup:

df <- data.frame(
old = c("One", "Two", "Three", "Four"),
new = c("A", "B", "C", "D")

)
vec |> rename_lookup(df$old, df$new)
#> A B C D
#> 1 2 3 4

Installation:
You can install from R-universe:

install.packages("namer", repos = c("https://hughjonesd.r-universe.dev",
"https://cloud.r-project.org"))

Or install the development version from GitHub:

# install.packages("remotes")
remotes::install_github("hughjonesd/namer")

Author(s)

Maintainer: David Hugh-Jones <davidhughjones@gmail.com>

named_in Subset objects by name

Description

Subset objects by name

Usage

named_in(x, y)

not_named_in(x, y)

Arguments

x An object with names.

y A vector of names.

https://github.com/
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Details

named_in(x, y) is similar to x[y] except that:

• unmatched elements of y do not return an NA element;
• elements are returned in their original order within x.

not_named_in(x, y) returns elements of x whose name is not an element of y.

Value

For named_in: x[names(x) %in% y].

For not_named_in: x[! names(x) %in% y].

Examples

vec <- c(one = 1, two = 2, three = 3, four = 4)
vec |> named_in(c("two", "one", "three", "five"))
vec |> not_named_in(c("two", "three"))

named_like Subset objects by name using a regular expression

Description

Subset objects by name using a regular expression

Usage

named_like(x, pattern, ...)

not_named_like(x, pattern, ...)

Arguments

x An object with names.
pattern A regular expression string (see regex).
... Passed in to grepl().

Value

For named_like: x[grepl(pattern, names(x), ...)].

For not_named_like: x[! grepl(pattern, names(x), ...)].

Examples

vec <- c(one = 1, two = 2, three = 3, four = 4)
vec |> named_like("^t")
vec |> not_named_like("e$")
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named_starting Subset objects by name using an initial substring

Description

Subset objects by name using an initial substring

Usage

named_starting(x, prefix)

Arguments

x An object with names.
prefix A character string

Value

x[startsWith(names(x), prefix)]

Examples

vec <- c(one = 1, two = 2, three = 3, four = 4)
vec |> named_starting("t")

other-resources Other useful resources for manipulating names

Description

There are several existing functions for working with names in R.

Details

Obviously, base::names() gets an object’s names and names<- sets them.
stats::setNames() directly returns the object after setting names.
base::make.names() turns a character vector into syntactically valid names. vctrs::vec_as_names()
does the same thing, r-lib style.
base::make.unique() makes elements of a character vector unique by appending sequence num-
bers to duplicates.
rlang::set_names() is like setNames() but also takes a function to transform names.
rlang::names2() is like names() but returns a character vector of "" rather than NULL if an object
has no names attribute.
dplyr::rename() and friends change the names of data frames or tibbles, but not other objects.
https://principles.tidyverse.org/names-attribute.html is a principled framework for think-
ing about names in R.

https://principles.tidyverse.org/names-attribute.html
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rename_all Rename all names

Description

Rename all names

Usage

rename_all(x, f, ...)

Arguments

x An object with names.

f A function, one-sided formula, or character vector.

... Passed into f. An error is thrown if ... is non-empty when f is a character
vector.

Details

• If f is a function it will be applied to the selected names. If it is a formula and the ’rlang’ pack-
age is installed, it will be converted to a function by rlang::as_function(), then applied.

• If f is a named character vector like c(new_name = "old_name", ...) then "old_name" will
become "new_name", as in dplyr::rename().

• If f is an unnamed character vector, these will be the new names in order.

Value

The renamed object.

Examples

vec <- c("One" = 1, "Two" = 2, "Three" = 3, "Four" = 4)
vec |> rename_all(tolower)
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rename_in Rename names in a set

Description

Elements of x whose names are in nm will be renamed.

Usage

rename_in(x, nm, f, ...)

Arguments

x An object with names.

nm A character vector passed to %in%.

f A function, one-sided formula, or character vector.

... Passed into f. An error is thrown if ... is non-empty when f is a character
vector.

Details

• If f is a function it will be applied to the selected names. If it is a formula and the ’rlang’ pack-
age is installed, it will be converted to a function by rlang::as_function(), then applied.

• If f is a named character vector like c(new_name = "old_name", ...) then "old_name" will
become "new_name", as in dplyr::rename().

• If f is an unnamed character vector, these will be the new names in order.

Value

The renamed object.

Examples

vec <- c("One" = 1, "Two" = 2, "Three" = 3, "Four" = 4)
vec |> rename_in(c("Two", "Three"), paste0, "x")
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rename_like Rename names that match a regular expression

Description

Rename names that match a regular expression

Usage

rename_like(
x,
pattern,
f,
...,
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

)

Arguments

x An object with names.
pattern A regular expression string (see regex).
f A function, one-sided formula, or character vector.
... Passed into f. An error is thrown if ... is non-empty when f is a character

vector.
ignore.case, perl, fixed, useBytes

Passed into grepl().

Details

• If f is a function it will be applied to the selected names. If it is a formula and the ’rlang’ pack-
age is installed, it will be converted to a function by rlang::as_function(), then applied.

• If f is a named character vector like c(new_name = "old_name", ...) then "old_name" will
become "new_name", as in dplyr::rename().

• If f is an unnamed character vector, these will be the new names in order.

Value

The renamed object.

Examples

vec <- c("One" = 1, "Two" = 2, "Three" = 3, "Four" = 4)
rename_like(vec, "^T", paste0, "x")
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rename_lookup Rename by looking up names in a table

Description

This is useful when you have a vector of old names and a vector of new names, or columns in a data
frame.

Usage

rename_lookup(x, old, new, warn = FALSE)

Arguments

x An object with names.

old Character vector. Existing names will be found using match(names(x), old)

new Character vector. A vector of new names to replace corresponding elements in
old.

warn Logical. Warn if any names are unmatched?

Details

Unmatched names are left unchanged.

Value

x renamed according to names(x) <- new[match(names(x), old)].

Examples

df <- data.frame(
old = c("One", "Two", "Three"),
new = c("New", "Newer", "Newest")

)
vec <- c("One" = 1, "Two" = 2, "Three" = 3, "Four" = 4)
vec |> rename_lookup(df$old, df$new)
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rename_remove_prefix Remove a prefix or suffix from names

Description

Remove a prefix or suffix from names

Usage

rename_remove_prefix(x, prefix)

rename_remove_suffix(x, suffix)

Arguments

x An object with names.

prefix, suffix A length 1 character vector to remove.

Details

• If f is a function it will be applied to the selected names. If it is a formula and the ’rlang’ pack-
age is installed, it will be converted to a function by rlang::as_function(), then applied.

• If f is a named character vector like c(new_name = "old_name", ...) then "old_name" will
become "new_name", as in dplyr::rename().

• If f is an unnamed character vector, these will be the new names in order.

Value

x with the prefix or suffix removed from names(x).

Examples

vec <- c("a.1" = 1, "aaa.1" = 2, "other" = 3, ".1" = 4)
vec |> rename_remove_suffix(".1")

vec <- c("x.a" = 1, "x.aaa" = 2, "other" = 3, "x." = 4)
vec |> rename_remove_prefix("x.")
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rename_starting Rename names that start with a prefix

Description

Rename names that start with a prefix

Usage

rename_starting(x, prefix, f, ...)

Arguments

x An object with names.

prefix A string.

f A function, one-sided formula, or character vector.

... Passed into f. An error is thrown if ... is non-empty when f is a character
vector.

Details

• If f is a function it will be applied to the selected names. If it is a formula and the ’rlang’ pack-
age is installed, it will be converted to a function by rlang::as_function(), then applied.

• If f is a named character vector like c(new_name = "old_name", ...) then "old_name" will
become "new_name", as in dplyr::rename().

• If f is an unnamed character vector, these will be the new names in order.

Value

The renamed object.

Examples

vec <- c("One" = 1, "Two" = 2, "Three" = 3, "Four" = 4)
vec |> rename_starting("T", \(x) gsub(x, "[aeiou]", "e"))
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rename_sub Rename using a regular expression

Description

Rename using a regular expression

Usage

rename_sub(x, pattern, replacement, ...)

rename_gsub(x, pattern, replacement, ...)

Arguments

x An object with names.
pattern, replacement, ...

Passed into sub() or gsub().

Details

These functions always apply to all names.

Value

The renamed object.

Examples

vec <- c("One" = 1, "Two" = 2, "Three" = 3, "Four" = 4)
vec |> rename_gsub("[aeiou]", "e")
vec |> rename_sub("([aeiou])", "-\\1-")

rename_where Rename names indexed by a subset

Description

Rename names indexed by a subset

Usage

rename_where(x, index, f, ...)
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Arguments

x An object with names.

index A logical or numeric index.

f A function, one-sided formula, or character vector.

... Passed into f. An error is thrown if ... is non-empty when f is a character
vector.

Details

• If f is a function it will be applied to the selected names. If it is a formula and the ’rlang’ pack-
age is installed, it will be converted to a function by rlang::as_function(), then applied.

• If f is a named character vector like c(new_name = "old_name", ...) then "old_name" will
become "new_name", as in dplyr::rename().

• If f is an unnamed character vector, these will be the new names in order.

Value

The renamed object.

Examples

vec <- c("One" = 1, "Two" = 2, "Three" = 3, "Four" = 4)
rename_where(vec, 2:3, paste0, 2:3)

sort_by_name Sort an object by its names

Description

Sort an object by its names

Usage

sort_by_name(x, decreasing = FALSE)

Arguments

x An object with names.

decreasing Logical. Should sort order be increasing or decreasing?

Value

x[sort(names(x), decreasing = decreasing)]
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Examples

vec <- c(one = 1, two = 2, three = 3, four = 4)
sort_by_name(vec)
sort_by_name(vec, decreasing = TRUE)
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