
Package: namer (via r-universe)
July 3, 2024

Title Easily Rename and Subset Objects by Name

Version 0.1.0

Description Contains convenience functions for naming. Select subsets
by name using matches or regular expressions. Rename objects
with regular expressions or paste.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Suggests rlang, dplyr, vctrs

Repository https://hughjonesd.r-universe.dev

RemoteUrl https://github.com/hughjonesd/namer

RemoteRef v0.1.0

RemoteSha e8b6e7edb848d5267e44c215566d1ec14be1c3d1

Contents
namer-package . 2
named_in . 4
named_like . 5
named_starting . 6
other-resources . 6
rename_all . 7
rename_in . 8
rename_like . 9
rename_lookup . 10
rename_remove_prefix . 11
rename_starting . 12
rename_sub . 13
rename_where . 13
sort_by_name . 14

1

2 namer-package

Index 16

namer-package Manipulate objects by name

Description

Contains convenience functions for naming. Select subsets by name using matches or regular ex-
pressions. Rename objects with regular expressions or paste.

Details

{namer} is a tiny r package containing convenience functions for manipulating objects by their
names. Using these functions makes your code easier to read, and reduces duplication:

library(namer)

vec <- c(One = 1, Two = 2, Three = 3, Four = 4)

Base R:
vec[startsWith(names(vec), "T")]
#> Two Three
#> 2 3

Clearer:
vec |> named_starting("T")
#> Two Three
#> 2 3

Base R:
some_names <- names(vec) %in% c("Two", "Three")
names(vec)[some_names] <- tolower(names(vec)[some_names])

Clearer:
vec |> rename_in(c("Two", "Three"), tolower)
#> One two three Four
#> 1 2 3 4

Base R:
vec[sort(names(vec))]
#> Four One three two
#> 4 1 3 2

Clearer:
vec |> sort_by_name()
#> Four One three two
#> 4 1 3 2

namer-package 3

Functions that start with named return a subset of the original object:

vec <- c(One = 1, Two = 2, Three = 3, Four = 4)
vec |> named_in(c("Two", "Three", "Non-existent"))
#> Two Three
#> 2 3
vec |> named_starting("T")
#> Two Three
#> 2 3
vec |> named_like("[A-Z].*e$")
#> One Three
#> 1 3

sort_by_name() sorts object by name:

sort_by_name(vec)
#> Four One Three Two
#> 4 1 3 2

Functions that start with rename return the object with its names changed. You can use a named
character vector:

vec |> rename_in(c("One", "Two"), c(one = "One", two = "Two"))
#> one two Three Four
#> 1 2 3 4

Or an unnamed character vector:

vec |> rename_in(c("One", "Two"), c("First", "Second"))
#> First Second Three Four
#> 1 2 3 4

Or a function:

vec |> rename_all(tolower)
#> one two three four
#> 1 2 3 4
vec |> rename_starting("T", tolower)
#> One two three Four
#> 1 2 3 4

Or you can use a one-sided formula, as in purrr:

vec |> rename_in(c("One", "Two"), ~paste(.x, 1:2, sep = "."))
#> One.1 Two.2 Three Four
#> 1 2 3 4

Or use a regular expression with rename_gsub:

https://purrr.tidyverse.org/

4 named_in

vec |> rename_gsub("[aeiou]", "e")
#> One Twe Three Feer
#> 1 2 3 4

Or match names from old to new with rename_lookup:

df <- data.frame(
old = c("One", "Two", "Three", "Four"),
new = c("A", "B", "C", "D")

)
vec |> rename_lookup(dfold, dfnew)
#> A B C D
#> 1 2 3 4

Installation:
You can install from R-universe:

install.packages("namer", repos = c("https://hughjonesd.r-universe.dev",
"https://cloud.r-project.org"))

Or install the development version from GitHub:

install.packages("remotes")
remotes::install_github("hughjonesd/namer")

Author(s)

Maintainer: David Hugh-Jones <davidhughjones@gmail.com>

named_in Subset objects by name

Description

Subset objects by name

Usage

named_in(x, y)

not_named_in(x, y)

Arguments

x An object with names.

y A vector of names.

https://github.com/

named_like 5

Details

named_in(x, y) is similar to x[y] except that:

• unmatched elements of y do not return an NA element;
• elements are returned in their original order within x.

not_named_in(x, y) returns elements of x whose name is not an element of y.

Value

For named_in: x[names(x) %in% y].

For not_named_in: x[! names(x) %in% y].

Examples

vec <- c(one = 1, two = 2, three = 3, four = 4)
vec |> named_in(c("two", "one", "three", "five"))
vec |> not_named_in(c("two", "three"))

named_like Subset objects by name using a regular expression

Description

Subset objects by name using a regular expression

Usage

named_like(x, pattern, ...)

not_named_like(x, pattern, ...)

Arguments

x An object with names.
pattern A regular expression string (see regex).
... Passed in to grepl().

Value

For named_like: x[grepl(pattern, names(x), ...)].

For not_named_like: x[! grepl(pattern, names(x), ...)].

Examples

vec <- c(one = 1, two = 2, three = 3, four = 4)
vec |> named_like("^t")
vec |> not_named_like("e$")

6 other-resources

named_starting Subset objects by name using an initial substring

Description

Subset objects by name using an initial substring

Usage

named_starting(x, prefix)

Arguments

x An object with names.
prefix A character string

Value

x[startsWith(names(x), prefix)]

Examples

vec <- c(one = 1, two = 2, three = 3, four = 4)
vec |> named_starting("t")

other-resources Other useful resources for manipulating names

Description

There are several existing functions for working with names in R.

Details

Obviously, base::names() gets an object’s names and names<- sets them.
stats::setNames() directly returns the object after setting names.
base::make.names() turns a character vector into syntactically valid names. vctrs::vec_as_names()
does the same thing, r-lib style.
base::make.unique() makes elements of a character vector unique by appending sequence num-
bers to duplicates.
rlang::set_names() is like setNames() but also takes a function to transform names.
rlang::names2() is like names() but returns a character vector of "" rather than NULL if an object
has no names attribute.
dplyr::rename() and friends change the names of data frames or tibbles, but not other objects.
https://principles.tidyverse.org/names-attribute.html is a principled framework for think-
ing about names in R.

https://principles.tidyverse.org/names-attribute.html

rename_all 7

rename_all Rename all names

Description

Rename all names

Usage

rename_all(x, f, ...)

Arguments

x An object with names.

f A function, one-sided formula, or character vector.

... Passed into f. An error is thrown if ... is non-empty when f is a character
vector.

Details

• If f is a function it will be applied to the selected names. If it is a formula and the ’rlang’ pack-
age is installed, it will be converted to a function by rlang::as_function(), then applied.

• If f is a named character vector like c(new_name = "old_name", ...) then "old_name" will
become "new_name", as in dplyr::rename().

• If f is an unnamed character vector, these will be the new names in order.

Value

The renamed object.

Examples

vec <- c("One" = 1, "Two" = 2, "Three" = 3, "Four" = 4)
vec |> rename_all(tolower)

8 rename_in

rename_in Rename names in a set

Description

Elements of x whose names are in nm will be renamed.

Usage

rename_in(x, nm, f, ...)

Arguments

x An object with names.

nm A character vector passed to %in%.

f A function, one-sided formula, or character vector.

... Passed into f. An error is thrown if ... is non-empty when f is a character
vector.

Details

• If f is a function it will be applied to the selected names. If it is a formula and the ’rlang’ pack-
age is installed, it will be converted to a function by rlang::as_function(), then applied.

• If f is a named character vector like c(new_name = "old_name", ...) then "old_name" will
become "new_name", as in dplyr::rename().

• If f is an unnamed character vector, these will be the new names in order.

Value

The renamed object.

Examples

vec <- c("One" = 1, "Two" = 2, "Three" = 3, "Four" = 4)
vec |> rename_in(c("Two", "Three"), paste0, "x")

rename_like 9

rename_like Rename names that match a regular expression

Description

Rename names that match a regular expression

Usage

rename_like(
x,
pattern,
f,
...,
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

)

Arguments

x An object with names.
pattern A regular expression string (see regex).
f A function, one-sided formula, or character vector.
... Passed into f. An error is thrown if ... is non-empty when f is a character

vector.
ignore.case, perl, fixed, useBytes

Passed into grepl().

Details

• If f is a function it will be applied to the selected names. If it is a formula and the ’rlang’ pack-
age is installed, it will be converted to a function by rlang::as_function(), then applied.

• If f is a named character vector like c(new_name = "old_name", ...) then "old_name" will
become "new_name", as in dplyr::rename().

• If f is an unnamed character vector, these will be the new names in order.

Value

The renamed object.

Examples

vec <- c("One" = 1, "Two" = 2, "Three" = 3, "Four" = 4)
rename_like(vec, "^T", paste0, "x")

10 rename_lookup

rename_lookup Rename by looking up names in a table

Description

This is useful when you have a vector of old names and a vector of new names, or columns in a data
frame.

Usage

rename_lookup(x, old, new, warn = FALSE)

Arguments

x An object with names.

old Character vector. Existing names will be found using match(names(x), old)

new Character vector. A vector of new names to replace corresponding elements in
old.

warn Logical. Warn if any names are unmatched?

Details

Unmatched names are left unchanged.

Value

x renamed according to names(x) <- new[match(names(x), old)].

Examples

df <- data.frame(
old = c("One", "Two", "Three"),
new = c("New", "Newer", "Newest")

)
vec <- c("One" = 1, "Two" = 2, "Three" = 3, "Four" = 4)
vec |> rename_lookup(dfold, dfnew)

rename_remove_prefix 11

rename_remove_prefix Remove a prefix or suffix from names

Description

Remove a prefix or suffix from names

Usage

rename_remove_prefix(x, prefix)

rename_remove_suffix(x, suffix)

Arguments

x An object with names.

prefix, suffix A length 1 character vector to remove.

Details

• If f is a function it will be applied to the selected names. If it is a formula and the ’rlang’ pack-
age is installed, it will be converted to a function by rlang::as_function(), then applied.

• If f is a named character vector like c(new_name = "old_name", ...) then "old_name" will
become "new_name", as in dplyr::rename().

• If f is an unnamed character vector, these will be the new names in order.

Value

x with the prefix or suffix removed from names(x).

Examples

vec <- c("a.1" = 1, "aaa.1" = 2, "other" = 3, ".1" = 4)
vec |> rename_remove_suffix(".1")

vec <- c("x.a" = 1, "x.aaa" = 2, "other" = 3, "x." = 4)
vec |> rename_remove_prefix("x.")

12 rename_starting

rename_starting Rename names that start with a prefix

Description

Rename names that start with a prefix

Usage

rename_starting(x, prefix, f, ...)

Arguments

x An object with names.

prefix A string.

f A function, one-sided formula, or character vector.

... Passed into f. An error is thrown if ... is non-empty when f is a character
vector.

Details

• If f is a function it will be applied to the selected names. If it is a formula and the ’rlang’ pack-
age is installed, it will be converted to a function by rlang::as_function(), then applied.

• If f is a named character vector like c(new_name = "old_name", ...) then "old_name" will
become "new_name", as in dplyr::rename().

• If f is an unnamed character vector, these will be the new names in order.

Value

The renamed object.

Examples

vec <- c("One" = 1, "Two" = 2, "Three" = 3, "Four" = 4)
vec |> rename_starting("T", \(x) gsub(x, "[aeiou]", "e"))

rename_sub 13

rename_sub Rename using a regular expression

Description

Rename using a regular expression

Usage

rename_sub(x, pattern, replacement, ...)

rename_gsub(x, pattern, replacement, ...)

Arguments

x An object with names.
pattern, replacement, ...

Passed into sub() or gsub().

Details

These functions always apply to all names.

Value

The renamed object.

Examples

vec <- c("One" = 1, "Two" = 2, "Three" = 3, "Four" = 4)
vec |> rename_gsub("[aeiou]", "e")
vec |> rename_sub("([aeiou])", "-\\1-")

rename_where Rename names indexed by a subset

Description

Rename names indexed by a subset

Usage

rename_where(x, index, f, ...)

14 sort_by_name

Arguments

x An object with names.

index A logical or numeric index.

f A function, one-sided formula, or character vector.

... Passed into f. An error is thrown if ... is non-empty when f is a character
vector.

Details

• If f is a function it will be applied to the selected names. If it is a formula and the ’rlang’ pack-
age is installed, it will be converted to a function by rlang::as_function(), then applied.

• If f is a named character vector like c(new_name = "old_name", ...) then "old_name" will
become "new_name", as in dplyr::rename().

• If f is an unnamed character vector, these will be the new names in order.

Value

The renamed object.

Examples

vec <- c("One" = 1, "Two" = 2, "Three" = 3, "Four" = 4)
rename_where(vec, 2:3, paste0, 2:3)

sort_by_name Sort an object by its names

Description

Sort an object by its names

Usage

sort_by_name(x, decreasing = FALSE)

Arguments

x An object with names.

decreasing Logical. Should sort order be increasing or decreasing?

Value

x[sort(names(x), decreasing = decreasing)]

sort_by_name 15

Examples

vec <- c(one = 1, two = 2, three = 3, four = 4)
sort_by_name(vec)
sort_by_name(vec, decreasing = TRUE)

Index

base::make.names(), 6
base::make.unique(), 6
base::names(), 6

dplyr::rename(), 6

grepl(), 5, 9
gsub(), 13

named_in, 4
named_like, 5
named_starting, 6
namer (namer-package), 2
namer-package, 2
names(), 6
not_named_in (named_in), 4
not_named_like (named_like), 5

other-resources, 6

regex, 5, 9
rename_all, 7
rename_gsub (rename_sub), 13
rename_in, 8
rename_like, 9
rename_lookup, 10
rename_remove_prefix, 11
rename_remove_suffix

(rename_remove_prefix), 11
rename_starting, 12
rename_sub, 13
rename_where, 13
rlang::as_function(), 7–9, 11, 12, 14
rlang::names2(), 6
rlang::set_names(), 6

setNames(), 6
sort_by_name, 14
stats::setNames(), 6
sub(), 13

vctrs::vec_as_names(), 6

16

	namer-package
	named_in
	named_like
	named_starting
	other-resources
	rename_all
	rename_in
	rename_like
	rename_lookup
	rename_remove_prefix
	rename_starting
	rename_sub
	rename_where
	sort_by_name
	Index

